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We consider two systems of nearly identical mappings on the circle, each having a single fixed point and
additive noise. The noise moves each system between stable and unstable regions of the map, causing the
separation of the systems to fluctuate. The geometric distribution of separations is characterized by a distribu-
tion exponent, which describes the degree of synchronization between the two systems. The distribution
exponent is related to the conditional Lyapunov exponent, the more usual way of characterizing synchroniza-
tion. The relation between the distribution and Lyapunov exponents is determined near the threshold of
synchronization, where we prove that the two exponents change sign together. Fluctuations of separation that
appear in systems driven by noise also appear in systems driven by chaos so that many of the methods may be
useful for analyzing chaotic synchronization.@S1063-651X~96!02010-7#

PACS number~s!: 05.45.1b, 02.50.Ey

I. INTRODUCTION

Synchronization between the trajectories of two identical
mapswi115h(j i ,wi), xi115h(j i ,xi), with different initial
states, occurs when the separation between the two state vari-
ables at a particular iterationuwi2xi u approaches zero for
long times and for typical inputj. If j is chaotic the synchro-
nization is known as chaotic synchronization. Pecora and
Carroll first studied chaotic synchronization through use of a
transmitting system and a subsystem of that transmitting sys-
tem@1#. Later they generalized their approach to two systems
fed with a chaotic input@2#. Their work is related to an
earlier study which studies multiple mutually coupled cha-
otic systems@3#. Subsequently many papers have been pub-
lished on the subject of chaotic synchronization@4–9#. Some
of these have applied chaotic synchronization to the practical
realm of secure communication@8,9#. If a receiver and trans-
mitter behave chaotically and synchronize, information
might be sent from one to the other with a low probability of
intercept. Any practical system using chaotic synchroniza-
tion, such as secure communication system, will be exposed
to perturbations which might affect the synchronization of
the system and thus the performance of the system. To
choose the best operating parameters of systems used in ap-
plications, the degree of synchronization must be quantified.
The quantification should be easy to measure and have clear
physical meaning.

When the separation between the two systems is small, its
evolution can be described using the instantaneous Lyapunov
exponent of a single map. If the instantaneous Lyapunov
exponent is positive the separation grows; if it is negative the
separation shrinks. The greater the absolute value of the in-
stantaneous Lyapunov exponent the greater the change in the
separation for that mapping step. If the average of these in-
stantaneous Lyapunov exponents approaches a positive value
the two systems will be unsynchronized; if it approaches a
negative value the two systems will be synchronized. The
relation between this long term average, which we call the
conditional Lyapunov exponentl, and synchronization, was
first noted by Pecora and Carroll@1,2#. When the driving

signal j is a noisy signal rather than a chaotic signal the
instantaneous Lyapunov exponents are still well defined and
retain the same physical significance. Thus systems with
noisy inputs can also synchronize if the conditional
Lyapunov exponent is negative.

Papers studying chaotic synchronization through com-
puter simulations have described synchronization through
the conditional Lyapunov exponent@1,2#. In a simulation the
model is known and the conditional Lyapunov exponent can
be easily calculated. However the Lyapunov exponent is dif-
ficult to measure experimentally, requiring considerable data
and computation. In an experimental system other character-
istics of synchronization may be easier to measure than the
conditional Lyapunov exponent.

One easily measured characteristic of noisy and chaotic
synchronization is the length of intermittent fluctuations of
separation between two synchronizing systems. In the pres-
ence of either a chaotic or a noisy driving signal the instan-
taneous Lyapunov exponent fluctuates and may take on both
positive and negative values. The fluctuations in an instanta-
neous Lyapunov exponent cause fluctuations of the separa-
tion between the two systems. The average separation, how-
ever, will have a drift which depends on the conditional
Lyapunov exponent. If the conditional Lyapunov exponent is
positive the average separation increases over time until the
average separation is approximately the same as the system
size. If the conditional Lyapunov exponent is negative, the
average separation decreases over time, and if the two sys-
tems are perfectly identical the average separation will con-
tinue to shrink. However, if the two systems are slightly
different or the driving signal sent to the two systems is
slightly different ~difference noise!, the average separation
will be asymptotically finite. Such differences are inevitable
in any experimental system, as noted by researchers who
have studied chaotic synchronization experimentally@2,10#.

In an experimental system near the threshold of synchro-
nization the fluctuations in separation are observed as inter-
mittent bursts of synchronized behavior between two sys-
tems. The model for the evolution of the separation between
two synchronizing systems is similar to the model for on-off
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intermittency@11,12#. In a system driven by noise or chaos
the on-off intermittency model predicts bursts of unsynchro-
nized behavior interspersed with periods of synchronization
and further predicts the scaling behavior of the probability of
the bursts with the lengths of the bursts. This universal scal-
ing behavior has been identified in the synchronized bursts of
two chaotically synchronized systems@13#. The universal
scaling behavior of on-off intermittency is easy to measure in
the synchronized bursts of two systems; however, it only
serves to identify synchronization behavior, not to quantify
it.

In this paper we develop another tool for characterizing
synchronization, the distribution exponent@14#, which is a
measurement made on two nearly identical maps. The degree
of synchronization can be quantified by the distribution of
the separations between the two systems; the distribution ex-
ponent describes this distribution and therefore has a strong
connection to the intuitive notion of synchronization. We
find that the probability distribution is geometric in separa-
tion ~exponential in logarithmic separation! with parameter
~exponent! s, for separations lying between the magnitude of
separations generated by the system differences and the mag-
nitude of the system size. This exponent characterizes the
degree of synchronization; it is negative if the two systems
are synchronized and it is positive if the two systems are
unsynchronized. We determine the distribution exponent and
the connection between it and the conditional Lyapunov ex-
ponent. Pikovsky@14# introduced some of these ideas using a
piecewise linear map on the circle@0,1! with uniform ~large
amplitude! additive noise, a case amenable to analysis. By
examining the same map driven by arbitrary noise ampli-
tudes we draw more general conclusions about the connec-
tions between the distribution and conditional Lyapunov ex-
ponents. We prove that the two exponents always have the
same sign. For the piecewise linear map, we relate

ds

dlU
l50

to the amplitude of the noise.
To measure the distribution exponent in any pair of sys-

tems, those systems must be nearly identical. If the differ-
ences between the systems are too large, no region exists
having a probability of separation that scales geometrically.
Generalized synchronization detects synchronization be-
tween two systems which have substantial differences by
noting whether points close in the phase space of one system
are also close in the phase space of the other system@15–17#.
If the two systems are generally synchronized then there
should exist a continuous map which takes points in one
phase space to the other. From a set of data points from the
two maps one determines the likelihood of the existence of a
continuous map and thus the likelihood of synchronization.
Further development of generalized synchronization to in-
corporate the distribution exponent is beyond the scope of
this paper.

After formalizing the equations we use for study in Sec.
II, we develop methods, in Sec. III, required to determine
analytically the invariant distribution on the circle and use
these to calculate the conditional Lyapunov exponent of a
piecewise linear map over a range of additive noise ampli-

tudes. This analysis is sufficiently general that it can be ap-
plied to other maps containing a single fixed point with ad-
ditive noise on the circle. We then develop a formalism in
Sec. IV to calculate the form of the invariant distribution of
separation and its distribution exponent. For a piecewise lin-
ear map with additive noise, used as an example, we com-
pare numerical and analytical results for the conditional
Lyapunov exponent and obtain a correspondence between
the conditional Lyapunov exponent and the distribution ex-
ponent at the threshold of synchronization. In the concluding
discussion, in Sec. V, we show how these results concerning
noisy synchronization might be generalized to apply to cha-
otic synchronization.

II. FORMULATION IN SUM AND DIFFERENCE
VARIABLES

The basic system used for analysis in this paper is two
maps with additive noise

wn115h~wn!1un ,
~1!

xn115h~xn!1qn ,

for which the random processesu andq differ slightly as
explained in the Introduction. These random processes can
be split into a common componentj and an asymmetric
componentd,

un5jn1
dn
2
,

qn5jn2
dn
2
.

~2!

We use the expectation operatorE @18# to measure the mean,

E~x!5E
2`

`

xp~x!dx, ~3!

and the variance,

E„@x2E~x!#2…5E
2`

`

„x2E~x!…2p~x!dx, ~4!

of a random variablex, wherep(x) is the probability distri-
bution function ofx. In ~2! the variance of the asymmetric
componentE„@d2E~d!#2… is assumed to be orders of magni-
tude less than the variance ofj and therefore of the system
variablex. Substituting~2! in ~1! we obtain

wn115h~wn!1jn1
dn
2
,

xn115h~xn!1jn2
dn
2
.

~5!

Equations~5! can be transformed by introducing the sum
and difference variables
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sn5
wn1xn

2
,

r n5wn2xn .
~6!

The region where the invariant distribution of separation is
geometric only occurs whenr is small. We limit our analysis
to this region for which the expressions forh(w) andh(x)
can be approximated by Taylor expansions

h~wn!5hS sn1 r n
2 D'h~sn!1h8~sn!

r n
2
,

h~xn!5hS sn2 r n
2 D'h~sn!2h8~sn!

r n
2
.

~7!

Substituting~7! into ~5! and adding and subtracting the two
equations gives

sn115h~sn!1jn , ~8!

r n115h8~sn!r n1dn . ~9!

The sum variable is now decoupled from the difference vari-
able, and the difference variable depends in a simple way on
the sum variable. The nonlinear terms, ignored in~7!, keepr
bounded within the attractor size.

III. DISTRIBUTIONS FOR THE SUM VARIABLES

A. Linear map

We first examine~8! for linear mapsh(s)5ms1b with
different types of additive noisej

sn115msn1b1jn . ~10!

The linear map~10! is unstable forumu.1, with or without
additive noisejn . When umu.1, a noise contribution in-
creases with each iteration, and the variables does not re-
main bounded. We examine the caseumu,1 with white noise
so that time steps are independent. Because the distribution
of the sum of two independent random variables is the con-
volution of the two distributions, the convolution of the dis-
tribution of h(sn) with the distribution ofj gives the distri-
bution of sn11. If the distribution S of s is to remain
invariant it must satisfy the equation

S~s!5
1

m E
2`

`

J~s2s8!SS s82b

m Dds8, ~11!

whereJ is the distribution ofj, m is the slope of the linear
map, andb is the intercept of the linear map.

The solution of ~11! is straightforward ifJ is Gauss-
ian. S will be Gaussian because the convolution of two
Gaussian distributions is Gaussian. To determine the entire
distribution we determine its mean and variance which must
remain the same before and after applying the map and add-
ing the noise. For the mean

E~sn11!5E~sn!, ~12!

and substituting~10! into ~12! we have

E~ms1b1j!5E~s!. ~13!

Decomposing the left hand side by using the linearity of the
expectation operator, we obtain

mE~s!1b1E~j!5E~s!. ~14!

Solving for E(s) yields

E~s!5
E~j!1b

12m
. ~15!

For the variance

E„@sn112E~sn11!#
2
…5E„@sn2E~sn!#2…. ~16!

Substituting~10! into ~16!

E„@ms1b1j2E~s!#2…5E„@s2E~s!#2…, ~17!

using ~15! in ~17! and rearranging, we have

E„@ms2mE~s!1j2E~j!#2…5E„@s2E~s!#2…. ~18!

Using the independence ofs andj to eliminate cross terms in
the expectation on the left hand side of~18! and solving for
E„@s2E(s)#2…, we have

E„@s2E~s!#2…5
E„@j2E~j!#2…

12m2 . ~19!

Note that the variance of the distributionS is proportional to
the variance of the noise distributionJ, and that the variance
is singular atm561. @Equations~12! through~19! apply to
all distributions of the additive noise; however the invariant
distribution ofs will not be the same as the distribution ofj.#

B. Nonlinear map

Self-consistency, developed in~12!–~19! to find the in-
variant distribution of a linear map can be used to find ap-
proximate invariant distributions of nonlinear maps. The
technique works best on maps which transform a Gaussian
distribution to a new distribution with a single maximum; we
use such maps to illustrate the relation between the condi-
tional Lyapunov and geometric exponents. When applied to
maps with a single fixed point the approximation yields rea-
sonable results. Multiple stable fixed points might be treated
through rescaling techniques.

We approximate all distributions, before and after apply-
ing the mapping and the additive noise, with Gaussian dis-
tributions having the same mean and variance as the ones
they approximate. Applying self-consistency by substituting
~8! in ~12!, we have for the mean

E@h~s!1j#5E~s!, ~20!

and substituting~8! in ~16!, we have for the variance

E„$h~s!1j2E@h~s!1j#%2…5E„@s2E~s!#2…. ~21!

Sinces and j are independent~20! and ~21! can be trans-
formed to

E@h~s!#1E~j!5E~s!, ~22!
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and

E„$h~s!2E@h~s!#%2…1E„@j2E~j!#2…5E„@s2E~s!#2….
~23!

Assuming thats is Gaussian with a given mean and variance
we compute the new mean and variance of the transformed
distributionh(s). We verify the approximations by compar-
ing the analytic results with computer simulations for a
piecewise linear map which is 0 from21 to 1 and has slope
1/2 everywhere else. The noise added to the map has mean 0
and unity variance. Numerical solution of~22! and~23! pre-
dict a mean of zero and a variance of 1.041. After a computer
simulation of 53107 iterations of the map, the variance is
calculated to also be 1.041. Figure 1 shows the invariant
distribution and the error between the Gaussian distribution
with mean and variance calculated from~22! and ~23! and
the distribution determined from the computer simulation.

C. Maps on the circle

To transfer the above results from the real line to the
circle, the form of the noise must be adapted to the circle and
new methods used to calculate the mean and variance. We

transform Gaussian distributed noise on the real line to noise
on the circle through use of a mod 1 mapping. In the limit of
infinite variance on the real line the noise on the circle is
uniformly distributed. As the variance of the noise distrib-
uted on the real line approaches zero, it and its transforma-
tion to the circle approach ‘‘sure’’ values equal to their
means. Those means will be related by the mod 1 transfor-
mation.

We were able to use~3! to solve~13! and~20! because the
sum of the mean of two independent random variables de-
fined on the real line equals the mean of the sum of the same
two random variables. However, the quantity defined by a
truncated version of~3!

E
21/2

1/2

xp~x!dx ~24!

does not have the distributive property for the addition of
random variables on the circle. For this situation it is more
useful to determine the mean from the derivative of the Fou-
rier transform ofp(x) evaluated at zero frequency. For the
mean on the real line we have

E~x!5E
2`

`

xp~x!dx5 i
d

dv E
2`

`

e2 ivxp~x!dxU
v50

5 i
d

dv
P~v!Uv505

d

dv
arg@P~v!#U

v50

. ~25!

Our definition for ‘‘mean’’ on a circle is the estimate of the
derivative of the argument of the Fourier series at the origin
from elements in the series. We use seven point formulas to
estimate the derivative@19#.

We define ‘‘variance’’ on the circle in a similar fashion; it
is the estimate of the second derivative of the absolute value
of the fourier series at the origin, which, on the real line,
gives exactly

E„@x2E~x!#2…52S d2

dv2 P~v!2F ddv
P~v!G2D U

v50

52
d2

dv2 Abs@P~v!#U
v50

. ~26!

We compare simulated and analytical invariant distribu-
tions for two different maps; a continuous piecewise linear
map, on@20.5, 0.5!,

h~x!55 mux1
mu

2
2
1

2
,

msx,

mux2
mu

2
1
1

2
,

x,2 1
6

2 1
6 <x, 1

6

1
6 <x

~27!

and the logistic map, on@0,1!,

h~x!5ax~12x!. ~28!

FIG. 1. ~a! Invariant distribution of a piecewise linear maph(x)
with additive noise. The map is zero fromx521 to x51 and has
slope 1/2 everywhere else. The noise is Gaussian white noise with
unity variance. The computer simulation and the self-consistent pre-
diction are indistinguishable from each other.~b! The error between
a distribution estimated from a computer simulation of this map and
a Gaussian distribution with mean and variance calculated using
~22! and~23!. The simulation was run through 50 000 000 iterations
and sorted into overlapping bins of widthx50.6.
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For the piecewise linear map we takems520.5 as shown in
Fig. 2. For the logistic map we takea52.5. We add white
noisejn to each map and take the result mod 1 to obtain the
full system

xn115@h~xn!1jn#mod 1. ~29!

Figure 3 compares the theoretical distributions from~22! and
~23!, using the approximations of~25! and ~26!, to find a
mean and variance for the two maps~solid lines!, with the
computer simulations~dots! for E„@j2E~j!#2…50.02.

IV. DISTRIBUTIONS FOR THE DIFFERENCE VARIABLES

A. Difference equation

Equation~9! describes the dynamics of the separation be-
tween the two subsystems. Following the work of Pikovsky
@14#, we consider a logarithmic transformation of~9!,

zn5 lnur nu, ~30!

without the difference noised, to obtain

zn115zn1 lnuh8~sn!u. ~31!

The quantity lnuh8(sn)u is called the instantaneous Lyapunov
exponent because it describes the change in the separation of
two nearby maps over a single time step. The conditional
Lyapunov exponent is the asymptotic average of the instan-
taneous Lyapunov exponents

l5 lim
N→`

1

N (
n50

N

lnuh8~sn!u ~32!

over the orbit. It depends on the type of noise through the
dependence ofsn on the noise. We gather the instantaneous

exponents together in groups ofN and average within those
groups to determine a running average Lyapunov exponent
~previously called a local Lyapunov in@14#!

L j
N5

1

N (
n5 j

j1N21

lnuh8~sn!u. ~33!

The evolution of the difference variable can be described
using running average Lyapunov exponents, as

zN~ i11!5zNi1NLNi
N . ~34!

We assume that adjacent running average Lyapunov expo-
nents,LNi

N andLN( i11)
N , become independent of each other

asN grows large because the correlation between adjacent
running averages decreases as the group size grows. With
this assumption their sum follows the central limit theorem.
In addition we assume thatz andLNi

N become independent
for largeN. In simulations we have found that the correlation
between these two variables decreases asN increases, justi-
fying this assumption. Therefore an invariant distribution
Z(z) satisfies

ZN~ i11!~z!5E
2`

`

LN~LN!ZNi~z2NLN!dLN, ~35!

FIG. 2. A plot of the functionh in ~27! with ms520.5 and
mu51.75.

FIG. 3. ~a! The invariant distribution of map~27! having param-
eterms520.5 with additive noise having variance 0.02. The points
are generated from a simulation and the solid line is generated from
~22! and~23! by using the procedures outlined in Sec. III C.~b! The
invariant distribution of map~28! having parametera52.5 and
added noise having variance 0.01. The points are generated from a
simulation and the solid line is generated from~22! and ~23! by
using the procedures outlined in Sec. III C.
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where LN(LN) is the invariant distribution of the running
average Lyapunov exponents normalized such that

E
2`

`

LN~LN!dLN51. ~36!

A form of Z that satisfies this equation is

ZNi~z!5esz. ~37!

Inserting~37! into ~35! gives an expression fors,

esz5E
2`

`

LN~LN!es~z2NLN!dLN, ~38!

or

15E
2`

`

LN~LN!e2sNLN
dLN. ~39!

If LN(LN) is known, thens can be calculated. Thus with
these approximations, the invariant distribution forz is ex-
ponential inz with exponents. Transformation of this dis-
tribution to the separationr gives a geometric distribution
with parameters.

P~r !}r s21.

To determine the number of solutions to~39! we define

S~s![E
2`

`

LN~LN!e2sNLN
dLN. ~40!

Solutions of~39! are solutions of

S~s!51, ~41!

which depend onLN through the dependence ofS onLN. We
note that~41! has a trivial solution independent ofLN by
settings50 in ~40!. This yields

S~0!5E
2`

`

LN~LN!dLN, ~42!

and by the normalization~36!, we obtain

S~0!51. ~43!

Consider now the second derivative of~40!

d2

ds2 S~s!5E
2`

`

N2~LN!2LN~LN!e2sNLN
dLN. ~44!

Because every term in the integral in~44! is positive

d2S

ds2.0. ~45!

We use~43! and ~45! to sketchS~s! in Fig. 4, showing all
the ways thatS~s! can cross the horizontal lineS51. We see
that ~41! has only one or two solutions. Because we expect
the physical solution to depend onLN the trivial solution
s50 is ignored unlessS~s! is a degenerate curve like the one

in Fig. 4~c!. The second solution corresponding to either Fig.
4~d! or 4~e! depends onLN and is the physical solution.

A difficulty with the exponential form is that it is not
normalizable. However, we can impose cutoffs to remove
the difficulty. For large differences the Taylor expansion in
~7! fails; by physical reasoning the separation cannot grow
beyond the attractor size, which is assumed to be bounded in
z. At small scales the difference noise, ignored in~31!, forces
the two systems to remain separate.

If the system is more synchronized than not, the distribu-
tion exponent will be negative, and the two systems spend
more of their time separated by small distances than by large
ones. If the exponent is positive, the probability distribution
will be weighted toward large separations. The larger the
magnitude of the exponent the stronger the synchronization
or desynchronization. The distribution exponents is a con-
tinuous measure of the degree of synchronization that makes
intuitive sense because it describes the probability of separa-
tion.

B. An illustrative example

We use map~27! with additive noise to illustrate the ideas
developed in Sec. IV A. We define two quantitiesls5lnumsu
andlu5lnumuu. If we know the probabilityps that the tra-
jectory is in the stable region of the map and the probability
pu that the trajectory is in the unstable region, we obtain the
conditional Lyapunov exponent

l5psls1pulu . ~46!

From the invariant distribution, like the ones shown in Fig.
3~a! for a particular noise distribution we can determine the
probabilitiesps and pu . Contour plots Figs. 5~a! and 5~b!
compare the analytical results with simulation. The transition
between synchronized and unsynchronized evolution of the
two trajectories of a pair of maps~27! with additive noise
occurs as the curve markedl50 is crossed.

The distribution exponent is measured between trajecto-
ries evolving on two maps; for an invariant distribution of
separations to exist the two maps must contain difference
noise. We consider two copies of~27! with additive and
difference noise

wn115S h~wn!1jn1
dn
2 Dmod 1,

xn115S h~xn!1jn2
dn
2 Dmod 1

~47!

for which the variance ofd is of order 10212. Figure 6 gives
three plots of the logarithm of the probabilityP(z) versus
the separation on the scalez5lnur u, for the three values of
ms and common noise, given in the figure caption. The three
cases correspond to strongly synchronized~steep negative
slope!, slightly synchronized, and unsynchronized~positive
slope!. The exponential behavior of the invariant distribution
of separations is clear from the straight lines on the logarith-
mic plot. Belowz5212, the difference noise causes a dip in
probability which destroys the exponential behavior. Above
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z527 the Taylor expansion is not valid and the nonlinear
terms bring the two subsystems closer to each other, keeping
them within the attractor size.

Determining the behavior of the distribution exponent of
the maps~47! can be easily done at the extremes of noise
variance. Without noise the map is stable until the center
slopems drops below21. Two identical stable maps without
noise will stay synchronized and limd→0s52`. When the
fixed point goes unstable the whole map goes unstable, the
two trajectories become completely unsynchronized, and
s5`. In the opposite extreme if uniform noise on the circle
is added to the map at every iteration, the map is equally
likely to visit any point on the interval21/2 to 1/2. This is
the special case treated by Pikovsky@14#. At each step the

map will be in the unstable region with probabilitypu52/3
and land in the stable region with probabilityps51/3. This
uniform noise forces independence between the current state
of the system and any previous states such that,~39! holds
exactly for L1, from which we determine the distribution
exponent analytically. The distribution of the running aver-
age for one time step is

L1~L!5 2
3d~L2lu!1 1

3d~L2ls!, ~48!

where hered is the diracd function. Putting this into~39!
gives an equation fors

15 2
3e

2slu1 1
3e

2sls ~49!

FIG. 4. Five different possible cases for the shape of the curveS~s! given in ~40!. Solutions to~41! appear as intersections between the
curve and the lines51, which is also plotted. In~a!, ~b!, and~c! there is only one solution to~41! and the physical solution has gone to minus
infinity, infinity, and zero, respectively;~d! and~e! each show two solutions to~41!; the physical solution in~d! is negative while the physical
solution in ~e! is positive. Note that~c! is a degenerate case of~d! and ~e!.
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which can be solved numerically. Boths and l cross
through zero whenms'20.355. Ifms is less negative than
this the two maps become synchronized and their trajectories
stay close to each other despite the random fluctuations. If
ms is more negative than20.355, the trajectories of the two
maps spend more time far apart in phase space than close to
each other, i.e., the systems are unsynchronized. The distri-
bution exponent characterizes the continuous transition be-
tween synchronized and unsynchronized behavior.

C. Dependence between adjacent running averages

The maps of~47! can also elucidate the ideas of the run-
ning average Lyapunov exponentLN and the dependence

between it and the separationz, an idea important in obtain-
ing ~35!. The distribution exponent is much more difficult to
determine analytically than the conditional Lyapunov expo-
nent. Unlike the analysis leading to~49!, we need to account
for dependencies between time steps. As previously dis-
cussed, we average the instantaneous Lyapunov exponents
over N time steps such that the running average Lyapunov
exponentsLN become less dependent on each other. AsN
increases in~39! its solution becomes a better approximation
for s.

The distribution ofLN can be determined either through
numerical simulation or through mapping of the invariant
distribution. It is faster computationally to use numerical
simulations. Figure 7 compares the predicted of the distribu-
tion exponent from~39! for a common noise variance of
0.0698 andms520.1 with increasing values ofN, to the
value ofs measured from computer simulation~horizontal
line!. As N increases the prediction becomes closer to the
value measured in computer simulations, showing that the
running averages become increasingly independent of the
separation.

A main consequence of the dependence between instanta-
neous Lyapunov exponents is a modification of the variance.
For the maps of~47! with a common noise level of 0.020 89
and a center slopems520.5 the probability of having
L15ls is 0.685 and the probability of havingL15lu is
0.315. A random variable created from an average of five
samples of that random variable would have a variance of
0.0470. However the running averageL5 has a variance
0.0625. The variance of the running average is larger be-
cause after the instantaneous Lyapunov exponent has taken a
value, eitherls or lu , it is more likely to take the same value
during the next iteration.

D. Normal distribution of running arverages

The distribution ofLN for largeN approaches a normal
distribution, a consequence of the ergodic theorem@20#. The
mean ofLN for largeN should be the same asL1 and the
variance ofLN should decrease proportionally toN. Using a
normal distribution in~39! gives

15E
2`

` 1

A2pv/N
e2~1/2!@~L2l!2/~v/N!#e2NsLdL, ~50!

where the variancev is

v5 lim
N→`

N var~LN!. ~51!

The variancev can be split into two pieces, the variance of
the instantaneous Lyapunov exponent and the correction due
to the dependency between time steps. The dependency cor-
rection is expressed through a diffusion coefficient@21#

D5
1

2
1

^L i
1L i11

1 &

^~L i
1!2&

1
^L i

1L i12
1 &

^~L i
1!2&

1••• ~52!

with v expressed as

v5E„@L12E~L1!#2…2D. ~53!

FIG. 5. Two contour plots of conditional Lyapunov exponent in
the parameter space of noise variancej and center slopems of the
piecewise linear map. The noise is Gaussian with a variance indi-
cated on the vertical scale. The contour lines are spaced every 0.25.
Plot ~a! comes from analysis; plot~b!, from simulation.
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Performing the integration in~50! we obtain

15e2lNs1~1/2!~v/N!~Ns!2 ~54!

and solving fors we find

Ns~ 1
2vs2l!50. ~55!

Ignoring the trivial solutions50 we get

s5
2l

v
, ~56!

which is calculable from~32! and ~51!. The approximation
of a normal distribution is best at the maximum of the Gauss-

ian and deteriorates toward the tails. The further from zerol
is, the more the tails are emphasized in the calculation fors.
Consequently the approximation holds best whenl is close
to zero.

E. Relation between Lyapunov and distribution exponents

Figure 8 shows plots generated through computer simula-
tion of s versusl for the maps of~47!, with three different
noise levels, obtained by varyingms . Two features are clear
from the plot. Firsts andl always change sign together; the
graph stays in the first and third quadrants and always passes
through the origin. This relationship can be proved for any
distribution LN(LN) through use of the properties ofS~s!.
Recall thatS~0!51 and thatS always has positive curvature.
The first derivative ofS is

FIG. 6. P(z), the probability density, is plotted on a logarithmic scale vs the separationz5lnur u. @P(z)dz is the probability of finding the
two systems described by the mapping~47! between the range of separationsz andz1dz.# The common noise is Gaussian. The difference
noise is Gaussian with variance 10212. There are three different maps shown. In the synchronized mapms520.1 and common noise
variance is 0.0698. The map that is barely synchronized has parameterms520.951 and common noise variance 0.002 31. The unsynchro-
nized map has parameterms520.5 and common noise variance 0.0698.

FIG. 7. Plot of the prediction fors produced by the distribution
of LN for increasingN. The measurements were taken at a large
noise level with a Gaussian variance of 0.069 and a center slope of
the piecewise linear map of20.1.

FIG. 8. Plot of the distribution exponent vs the Lyapunov expo-
nent for three different noise levels. The large, medium, and low
noise levels used had variances of 0.0698, 0.0209, and 0.002 315,
respectively.

54 3385DEGREE OF SYNCHRONIZATION OF NOISY MAPS ON . . .



dS

ds
52E

2`

`

NLNLN~LN!e2sNLN
dLN. ~57!

We evaluate~57! at s50 to obtain

dS

dsU
s50

52E
2`

`

NLNLN~LN!dLN. ~58!

Since, for anyN,

l5E
2`

`

LNLN~LN!dLN ~59!

we have

dS

dsU
s50

52Nl. ~60!

A negative Lyapunov exponent selects Figs. 4~a! and 4~d! as
the only possibilities for the relationship betweenS~s! and
the horizontal lineS51, because through Eq.~60! the slope
of S~s! through S~0!50 must be positive. So the second
solution, if it exists, must be less than zero, as is the
Lyapunov exponent. Similarly, if the Lyapunov exponent is
positive, the slope must be negative, Figs. 4~b! and 4~e! are
the only possibilities, and the second solution must be posi-
tive.

The second feature of Fig. 8 is that the transition through
the origin is abrupt for low noise levels and gradual for large
noise levels. The slope of the line at zero quantifies the rate
of transition from synchronized to unsynchronized behavior.
This slope can be determined analytically from~56!. Using
expressions forl, L1, andv

l5pulu1psls , ~61!

^~L1!2&5pulu
21psls

2, ~62!

v5var~L1!2D5@^~L1!2&2l2#2D

52~l2lu!~l2ls!2D, ~63!

and substituting these into~56!, we obtain

s5
22l

~l2lu!~l2ls!2D
. ~64!

The derivative of~64! with respect tol is

ds

dl

5

2H l2F12
d~lu1ls!

dl G2lslu1llu

dls

dl
1lls

dlu

dl J
~l2ls!

2~l2lu!
22D

.

~65!

Evaluating~65! at l50 yields

ds

dlU
l50

5
22

lslu2D
. ~66!

wherelu andls take on values atl50 which depend on the
noise level. Table I shows a comparison between measured
values and predicted values of

ds

dlU
l50

.

The diffusion coefficientD defined in~52! was calculated
using computer simulations.

V. CONCLUSIONS AND DISCUSSION

We have studied the synchronization of trajectories sub-
ject to difference noise through use of a piecewise linear map
with additive white noise on the circle. To analyze the syn-
chronization properties of the map we developed approxima-
tion methods to obtain the invariant distribution of maps with
single fixed points on the circle. The invariant distribution
can be used to determine the conditional Lyapunov expo-
nent. We could easily measure and predict the conditional
Lyapunov exponent because of our knowledge of the map
used in the computer simulations. We developed another
method of characterizing the degree of synchronization, us-
ing a distribution exponent. This exponent describes the in-
variant distribution of the separations between two nearly
identical systems and is closely tied to the intuitive idea of
synchronization. Using a pair of piecewise linear maps with
difference noise, we obtained a distribution exponent de-
scribing the degree of synchronization between the maps.
We also illustrated how dependence between time steps of
the maps affects prediction of the distribution exponent. We
related the distribution exponent to the conditional Lyapunov
exponent near the threshold of synchronization, showing that
they change sign together, and determining

TABLE I. Comparison of the values ofds/dl ul50 measured through computer simulations and predicted
from Eq. ~66! for various common noise variances. The diffusion coefficient was calculated through com-
puter simulations.

Noise
variance

Diffusion
coefficient

ds

dl
U
l50

Prediction

ds

dl
U
l50

Simulations

Large noise 0.069 773 1.269 3.64 3.53
Medium noise 0.020 895 1.415 7.27 7.08
Low noise 0.002 315 1.452 40.7 36.8
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ds

dlU
l50

.

The piecewise linear map driven by additive Gaussian
white noise provides a basic system having both stable and
unstable regions for determining the distribution exponent.
However, maps that model many real systems are often
driven by correlated noisy signals that are not Gaussian. We
have observed exponential distribution of separation for the
maps~47! with other forms of additive noise distributions,
for the logistic map with additive Gaussian noise, for maps
describing digital phase locked loops~DPLLs! @8# with ran-
dom frequency input, and for DPLL systems that are fed not
with noise but with a signal from a deterministic chaotic
system.

The last case seems especially interesting since a chaotic
input comes from a deterministic system and since different
samples taken from a chaotic input signal are correlated. The
correlation between samples taken of a chaotic input signal

decreases as the time between the samples grows; however,
the samples never become fully independent. Figure 9,
which shows a graph remarkably similar to Fig. 6, was gen-
erated by a computer simulation of a DPLL system contain-
ing two nearly identical loops and fed with a signal from two
other loops operating in the chaotic regime@8#. These loops
were not fed by a random signal; i.e., the system is entirely
deterministic. Yet Fig. 9 shows the same features as Fig. 6;
an exponential distribution with a well defined slope and two
cutoffs. Because of these results we suggest that the distri-
bution exponent is well suited to measure chaotic synchroni-
zation.
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