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Degree of synchronization of noisy maps on the circle
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We consider two systems of nearly identical mappings on the circle, each having a single fixed point and
additive noise. The noise moves each system between stable and unstable regions of the map, causing the
separation of the systems to fluctuate. The geometric distribution of separations is characterized by a distribu-
tion exponent, which describes the degree of synchronization between the two systems. The distribution
exponent is related to the conditional Lyapunov exponent, the more usual way of characterizing synchroniza-
tion. The relation between the distribution and Lyapunov exponents is determined near the threshold of
synchronization, where we prove that the two exponents change sign together. Fluctuations of separation that
appear in systems driven by noise also appear in systems driven by chaos so that many of the methods may be
useful for analyzing chaotic synchronizatig®1063-651X96)02010-1

PACS numbeps): 05.45+b, 02.50.Ey

[. INTRODUCTION signal ¢ is a noisy signal rather than a chaotic signal the
instantaneous Lyapunov exponents are still well defined and
Synchronization between the trajectories of two identicalretain the same physical significance. Thus systems with
mapsw;, ;=h(& ,w;), X, 1=h(&;,%;), with different initial ~ noisy inputs can also synchronize if the conditional
states, occurs when the separation between the two state valtyapunov exponent is negative.
ables at a particular iteratiojw; —x;| approaches zero for Papers studying chaotic synchronization through com-
long times and for typical inpug. If £is chaotic the synchro- puter simulations have described synchronization through
nization is known as chaotic synchronization. Pecora andhe conditional Lyapunov exponefit,2]. In a simulation the
Carroll first studied chaotic synchronization through use of anodel is known and the conditional Lyapunov exponent can
transmitting system and a subsystem of that transmitting sy$e easily calculated. However the Lyapunov exponent is dif-
tem[1]. Later they generalized their approach to two systemdicult to measure experimentally, requiring considerable data
fed with a chaotic inpuf2]. Their work is related to an and computation. In an experimental system other character-
earlier study which studies multiple mutually coupled cha-istics of synchronization may be easier to measure than the
otic systemg3]. Subsequently many papers have been pubeonditional Lyapunov exponent.
lished on the subject of chaotic synchronizatidr-9]. Some One easily measured characteristic of noisy and chaotic
of these have applied chaotic synchronization to the practicadynchronization is the length of intermittent fluctuations of
realm of secure communicati$8,9]. If a receiver and trans- separation between two synchronizing systems. In the pres-
mitter behave chaotically and synchronize, informationence of either a chaotic or a noisy driving signal the instan-
might be sent from one to the other with a low probability of taneous Lyapunov exponent fluctuates and may take on both
intercept. Any practical system using chaotic synchronizapositive and negative values. The fluctuations in an instanta-
tion, such as secure communication system, will be exposedeous Lyapunov exponent cause fluctuations of the separa-
to perturbations which might affect the synchronization oftion between the two systems. The average separation, how-
the system and thus the performance of the system. Tever, will have a drift which depends on the conditional
choose the best operating parameters of systems used in dprapunov exponent. If the conditional Lyapunov exponent is
plications, the degree of synchronization must be quantifiedpositive the average separation increases over time until the
The quantification should be easy to measure and have cleaverage separation is approximately the same as the system
physical meaning. size. If the conditional Lyapunov exponent is negative, the
When the separation between the two systems is small, itsverage separation decreases over time, and if the two sys-
evolution can be described using the instantaneous Lyapundems are perfectly identical the average separation will con-
exponent of a single map. If the instantaneous Lyapuno¥inue to shrink. However, if the two systems are slightly
exponent is positive the separation grows; if it is negative thalifferent or the driving signal sent to the two systems is
separation shrinks. The greater the absolute value of the irslightly different (difference noisg the average separation
stantaneous Lyapunov exponent the greater the change in thall be asymptotically finite. Such differences are inevitable
separation for that mapping step. If the average of these inn any experimental system, as noted by researchers who
stantaneous Lyapunov exponents approaches a positive valbave studied chaotic synchronization experimentght0].
the two systems will be unsynchronized; if it approaches a In an experimental system near the threshold of synchro-
negative value the two systems will be synchronized. Thaization the fluctuations in separation are observed as inter-
relation between this long term average, which we call themittent bursts of synchronized behavior between two sys-
conditional Lyapunov exponent, and synchronization, was tems. The model for the evolution of the separation between
first noted by Pecora and Carrdll,2]. When the driving two synchronizing systems is similar to the model for on-off
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intermittency[11,12. In a system driven by noise or chaos tudes. This analysis is sufficiently general that it can be ap-

the on-off intermittency model predicts bursts of unsynchro-plied to other maps containing a single fixed point with ad-

nized behavior interspersed with periods of synchronizatiorlitive noise on the circle. We then develop a formalism in

and further predicts the scaling behavior of the probability ofSec. 1V to calculate the form of the invariant distribution of

the bursts with the lengths of the bursts. This universal scalseparation and its distribution exponent. For a piecewise lin-

ing behavior has been identified in the synchronized bursts afar map with additive noise, used as an example, we com-

two chaotically synchronized systenp$3]. The universal pare numerical and analytical results for the conditional

scaling behavior of on-off intermittency is easy to measure irLyapunov exponent and obtain a correspondence between

the synchronized bursts of two systems; however, it onljthe conditional Lyapunov exponent and the distribution ex-

serves to identify synchronization behavior, not to quantifyponent at the threshold of synchronization. In the concluding

it. discussion, in Sec. V, we show how these results concerning
In this paper we develop another tool for characterizingnoisy synchronization might be generalized to apply to cha-

synchronization, the distribution expondri4], which is a  otic synchronization.

measurement made on two nearly identical maps. The degree

of synchronization can be quantified by the distribution of Il. FEORMULATION IN SUM AND DIFEERENCE

the separations between the two systems; the distribution ex- VARIABLES

ponent describes this distribution and therefore has a strong

connection to the intuitive notion of synchronization. We The basic system used for analysis in this paper is two

find that the probability distribution is geometric in separa-maps with additive noise

tion (exponential in logarithmic separatipwith parameter

(exponenk o, for separations lying between the magnitude of Wni1=h(w,) +6,,
separations generated by the system differences and the mag- (1)
nitude of the system size. This exponent characterizes the Xn+1=h(X,)+ 9,

degree of synchronization; it is negative if the two systems

are synchronized and it is positive if the two systems areor which the random processesand ¢ differ slightly as
unsynchronized. We determine the distribution exponent andxplained in the Introduction. These random processes can
the connection between it and the conditional Lyapunov expe split into a common componeit and an asymmetric
ponent. Pikovsky14] introduced some of these ideas using acomponents,

piecewise linear map on the cirdl®,1) with uniform (large

amplitude additive noise, a case amenable to analysis. By

n
examining the same map driven by arbitrary noise ampli- On=E&nt PR
tudes we draw more general conclusions about the connec- 2)
tions between the distribution and conditional Lyapunov ex- s
ponents. We prove that the two exponents always have the Q=& -
same sign. For the piecewise linear map, we relate 2
do We use the expectation operatbfl18] to measure the mean,
A\ o oo
5(X)=f xp(x)dx, )

to the amplitude of the noise.
To measure the distribution exponent in any pair of sys-

tems, those systems must be nearly identical. If the differand the variance,

ences between the systems are too large, no region exists

having a probability of separation that scales geometrically.

Generalized synchronization detects synchronization be-

tween two systems which have substantial differences by

noting whether points close in the phase space of one systeg} 3 random variable, wherep(x) is the probability distri-

are also close in the phase space of the other systBr17.  pytion function ofx. In (2) the variance of the asymmetric
If the two systems are generally synchronized then ther@omponents([s—£(8)]P) is assumed to be orders of magni-
should exist a continuous map which takes points in ongge less than the variance éfand therefore of the system

phase space to the other. From a set of data points from thgyriablex. Substituting(2) in (1) we obtain
two maps one determines the likelihood of the existence of a

fx-e0)= | -gorpoodx @

continuous map and thus the likelihood of synchronization. s,
Further development of generalized synchronization to in- W1 =h(wy,) + &+ >
corporate the distribution exponent is beyond the scope of (5)
this paper.
After formalizing the equations we use for study in Sec.

On
1 . ) =h +é— =
Il, we develop methods, in Sec. lll, required to determine Xn+1=h(0) + & 2

analytically the invariant distribution on the circle and use
these to calculate the conditional Lyapunov exponent of a Equations(5) can be transformed by introducing the sum
piecewise linear map over a range of additive noise ampliand difference variables
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W+ X, E(ms+b+§&)=£&(s). (13
Sp= ,
2 6) Decomposing the left hand side by using the linearity of the
Fo—We— X expectation operator, we obtain
n n n-

The region where the invariant distribution of separation is ME(s) + b+ E(£) =£(s). (14
geometric only occurs whemnis small. We limit our analysis  solving for £(s) yields
to this region for which the expressions fofw) andh(x)

can be approximated by Taylor expansions £(s) E(&)+Db
s)= .
1-m

(19
Mn , Mn
h(w,) =h syt 3| ~h(s,) +h'(sy) 5,

For the variance
E(Sns1—E(5n+ 1)1 =E(Sh—E(s0) D). (16)
Substituting(10) into (16)

Substituting(7) into (5) and adding and subtracting the two E(ms+b+£—E&5)1D)=E(s— &)1, (17)
equations gives

(@)

In

o) =h] 31 2 <hts) (s 5.

using(15) in (17) and rearranging, we have
Sn+1=h(sy) +&n,
E((ms—mé(s)+E-E(6)1)=E(s—-&9)]). (18
Fne1=h'(Sp)rn+ 6. C) . . o .

Using the independence sfandé to eliminate cross terms in
The sum variable is now decoupled from the difference varithe expectation on the left hand side(@B) and solving for
able, and the difference variable depends in a simple way oéi([s—&(s) %), we have
the sum variable. The nonlinear terms, ignored7n keepr
bounded within the attractor size.

E[E-E)T)

E(s= &9 = —F—

(19

Ill. DISTRIBUTIONS FOR THE SUM VARIABLES . o .
Note that the variance of the distributi@is proportional to

A. Linear map the variance of the noise distributi@ and that the variance
We first examing(8) for linear mapsh(s)=ms+b with  is singular am==1. [Equations(12) through(19) apply to
different types of additive noisé all distributions of the additive noise; however the invariant

distribution ofs will not be the same as the distribution &t
Sp+1=M§+b+ &, (10)
] ) ] ] B. Nonlinear map
The linear map(10) is unstable fom|>1, with or without ] ] ] ]
additive noise&,. When |m|>1, a noise contribution in- Self-consistency, developed 12)—(19) to find the in-
creases with each iteration, and the variabldoes not re- Variant distribution of a linear map can be used to find ap-
main bounded. We examine the casg<1 with white noise ~ Proximate invariant distributions of nonlinear maps. The
so that time steps are independent. Because the distributidgchnique works best on maps which transform a Gaussian
of the sum of two independent random variables is the condistribution to a new distribution with a single maximum; we
volution of the two distributions, the convolution of the dis- Us€ such maps to illustrate the relation between the condi-
tribution of h(s,) with the distribution of¢ gives the distri- ~ tional Lyapunov and geometric exponents. When applied to

bution of s,,,. If the distribution S of s is to remain Maps with a single fi>_<ed point thg appro_ximati_on yields rea-
invariant it must satisfy the equation sonable results. Multiple stable fixed points might be treated

through rescaling techniques.
We approximate all distributions, before and after apply-
)ds’, (11)  ing the mapping and the additive noise, with Gaussian dis-
tributions having the same mean and variance as the ones
they approximate. Applying self-consistency by substituting
(8) in (12), we have for the mean

!

oo

1 S
S(s)= a JlooE(S— S')S T

whereZ is the distribution of¢, m is the slope of the linear
map, and is the intercept of the linear map.
The solution of (11) is straightforward ifE is Gauss- _

ian. S will be Gaussian because the convolution of two h(s)+£1=&9), 20
Gaussian distributions is Gaussian. To determine the entirgnd substituting8) in (16), we have for the variance
distribution we determine its mean and variance which must
remain the same before and after applying the map and add- EGh(s)+E—&h(s)+£1)=E(s—&(9)1D). (21
ing the noise. For the mean

Sinces and ¢ are independenf20) and (21) can be trans-

E(Snr1)=E&(Sp), (120  formed to

and substitutind10) into (12) we have Eh(s)]+E&(&)=&(s), (22
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transform Gaussian distributed noise on the real line to noise
on the circle through use of a mod 1 mapping. In the limit of
infinite variance on the real line the noise on the circle is
uniformly distributed. As the variance of the noise distrib-
uted on the real line approaches zero, it and its transforma-
tion to the circle approach “sure” values equal to their
means. Those means will be related by the mod 1 transfor-
mation.

We were able to us€) to solve(13) and(20) because the
sum of the mean of two independent random variables de-
fined on the real line equals the mean of the sum of the same
two random variables. However, the quantity defined by a
truncated version of3)

(a)

2 4 12
Error f_ 1/2)( p(x)dx (24)
(b)
0 0004’ does not have the distributive property for the addition of
IRt random variables on the circle. For this situation it is more
useful to determine the mean from the derivative of the Fou-
0.0002 rier transform ofp(x) evaluated at zero frequency. For the
St . . mean on the real line we have
—4 22 2 4 s .
oo} g00= | xpoodx=i o | e poxax
. — o0 — ©=0
-0.0004 d d
=i 4o P(@)|u=0=g, ardP(w)] . (25)

FIG. 1. (a) Invariant distribution of a piecewise linear mafx)
with additive noise. The map is zero fror=—1 to x=1 and has  Our definition for “mean” on a circle is the estimate of the
slope 1/2 everywhere else. The noise is Gaussian white noise witierivative of the argument of the Fourier series at the origin
unity variance. The computer simulation and the self-consistent prefrom elements in the series. We use seven point formulas to
diction are indistinguishable from each othés). The error between  estimate the derivativgl9].
a distribution estimated from a computer simulation of this map and  \y/e define “variance” on the circle in a similar fashion; it

a Gaussian distribution with mean and variance calculated using5 the estimate of the second derivative of the absolute value
(22) and(23). The simulation was run through 50 000 000 iterationsof the fourier series at the origin, which, on the real line,
and sorted into overlapping bins of widt+0.6. gives exactly

and

d2 d 2
_ o |2 =
£G4t ~eTh(s )+ ele=ae )= els=eo). EQx=£001) (dw2 Ple)|ge P ) oo
d2
Assuming thas is Gaussian with a given mean and variance P Abq P(w)] (26)
w=0

we compute the new mean and variance of the transformed
distributionh(s). We verify the approximations by compar- ) o ] o
ing the analytic results with computer simulations for a We compare simulated and analytical invariant distribu-
piecewise linear map which is 0 from1 to 1 and has slope tions for two different maps; a continuous piecewise linear
1/2 everywhere else. The noise added to the map has meard"#p, on[—0.5, 0.5,

and unity variance. Numerical solution (#2) and(23) pre-

dict a mean of zero and a variance of 1.041. After a computer (
simulation of 5<10’ iterations of the map, the variance is m x-+ ﬂ_l x<—1
calculated to also be 1.041. Figure 1 shows the invariant Y 2 2
distribution and the error between the Gaussian distribution h(x)=¢{ mg, Cloyel (27)
with mean and variance calculated frai@2) and (23) and m, 1 6 =78
the distribution determined from the computer simulation. myX— 7+ > I<x

\

C. Maps on the circle

To transfer the above results from the real line to theand the logistic map, of0,1),
circle, the form of the noise must be adapted to the circle and
new methods used to calculate the mean and variance. We h(x)=ax(1—Xx). (28
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h(x)

-0.4 0.2 0 0.4

FIG. 2. A plot of the functionh in (27) with mg=-0.5 and
m,=1.75.

For the piecewise linear map we takg=—0.5 as shown in
Fig. 2. For the logistic map we take=2.5. We add white
noiseé, to each map and take the result mod 1 to obtain the FIG. 3. (@) The invariant distribution of maf27) having param-
full system etermy=—0.5 with additive noise having variance 0.02. The points
are generated from a simulation and the solid line is generated from
Xnt1=[h(x,)+&,Jmod 1. (290 (22 and(23) by using the procedures outlined in Sec. 11(B) The
invariant distribution of map(28) having parametea=2.5 and
Figure 3 compares the theoretical distributions fi@® and  added noise having variance 0.01. The points are generated from a
(23), using the approximations g25) and (26), to find a  simulation and the solid line is generated fr¢@®) and (23) by
mean and variance for the two mafsolid lineg, with the  using the procedures outlined in Sec. Il C.
computer simulationgdots for £([é—£(£)]%)=0.02.
exponents together in groups Nfand average within those
IV. DISTRIBUTIONS FOR THE DIFFERENCE VARIABLES groups to determine a running average Lyapunov exponent

(previously called a local Lyapunov ii4])
A. Difference equation

Equation(9) describes the dynamics of the separation be- AN=
tween the two subsystems. Following the work of Pikovsky !
[14], we consider a logarithmic transformation (@,

1 J+N-1
N ~In[h'(sy)]. (33

n

J

The evolution of the difference variable can be described

z,=1In|r |, (300 using running average Lyapunov exponents, as
without the difference noisé, to obtain ZN(i+l):ZNi+NANi- (39
Zni1=2ZytIn[h'(sp)]. (3))  We assume that adjacent running average Lyapunov expo-

, , _ , nents,A; and A N+ 1y, become independent of each other
The quantity Ifih'(s,)| is called the instantaneous LyapunoV 4¢ N grows large because the correlation between adjacent

exponent because it describes the change in the separationigfining averages decreases as the group size grows. With

two nearby maps over a single time step. The conditionajhis gssumption their sum follows the central limit theorem.
Lyapunov exponent is the asymptotic average of the instany, addition we assume thatand AN, become independent

taneous Lyapunov exponents for largeN. In simulations we have found that the correlation
LN between these two variables decreasehl ascreases, justi-
— lim , fying this assumption. Therefore an invariant distribution
A ,\l[nw N nZ‘o Infh” (s0)] (32 Z(2) satisfies
over the orbit. It depends on the type of noise through the ZN(i+1)(Z):J LN(AN)Zpi(z—NANdAN, (35
dependence dof, on the noise. We gather the instantaneous —w
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where LN(AN) is the invariant distribution of the running

average Lyapunov exponents normalized such that

f LN(AN)dAN=1. (36)
A form of Z that satisfies this equation is
Zyi(z)=e" (37)
Inserting(37) into (35) gives an expression far,
eoz: f LN(AN)ea(szAN)dAN, (38)
or
1= f LN(AN)e oNAYGAN. (39)

If LN(AN) is known, theno can be calculated. Thus with

these approximations, the invariant distribution fois ex-
ponential inz with exponento. Transformation of this dis-

tribution to the separation gives a geometric distribution

with parametero.
P(r)ocro—1,

To determine the number of solutions @9) we define

S(U)Ef LN(AN)e=oNA"GAN. (40)
Solutions of(39) are solutions of
S(o)=1, (41)

which depend om.N through the dependence 8bnLN. We
note that(41) has a trivial solution independent af¥ by
settingo=0 in (40). This yields

S(O)=f LN(AMdA®, (42)
and by the normalizatio(36), we obtain
S(0)=1. (43

Consider now the second derivative (@)

d? * N
WS(cr)=f_mNZ(AN)zLN(AN)e‘”NA dAN. (49
Because every term in the integral (#) is positive
d?s

We use(43) and (45) to sketchS(o) in Fig. 4, showing all
the ways thaS(o) can cross the horizontal lire=1. We see
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in Fig. 4(c). The second solution corresponding to either Fig.
4(d) or 4(e) depends o.M and is the physical solution.

A difficulty with the exponential form is that it is not
normalizable. However, we can impose cutoffs to remove
the difficulty. For large differences the Taylor expansion in
(7) fails; by physical reasoning the separation cannot grow
beyond the attractor size, which is assumed to be bounded in
z. At small scales the difference noise, ignored3m), forces
the two systems to remain separate.

If the system is more synchronized than not, the distribu-
tion exponent will be negative, and the two systems spend
more of their time separated by small distances than by large
ones. If the exponent is positive, the probability distribution
will be weighted toward large separations. The larger the
magnitude of the exponent the stronger the synchronization
or desynchronization. The distribution exponenis a con-
tinuous measure of the degree of synchronization that makes
intuitive sense because it describes the probability of separa-
tion.

B. An illustrative example

We use map27) with additive noise to illustrate the ideas
developed in Sec. IV A. We define two quantities=In|mg|
and \,=In|m|. If we know the probabilityp, that the tra-
jectory is in the stable region of the map and the probability
p, that the trajectory is in the unstable region, we obtain the
conditional Lyapunov exponent

AN=PsAstPuly- (46)
From the invariant distribution, like the ones shown in Fig.
3(a) for a particular noise distribution we can determine the
probabilitiesps and p,. Contour plots Figs. & and 3b)
compare the analytical results with simulation. The transition
between synchronized and unsynchronized evolution of the
two trajectories of a pair of map@7) with additive noise
occurs as the curve markad=0 is crossed.

The distribution exponent is measured between trajecto-
ries evolving on two maps; for an invariant distribution of
separations to exist the two maps must contain difference
noise. We consider two copies ¢27) with additive and
difference noise

mod 1,

o
Wpp1=| h(wp)+ &+ 5

(@7
Sn
Xn+1= ( h(xp) + &~ ?) mod 1

for which the variance ob is of order 10*2. Figure 6 gives
three plots of the logarithm of the probabili§(z) versus
the separation on the scate=In|r|, for the three values of
mg and common noise, given in the figure caption. The three
cases correspond to strongly synchroniZetéep negative
slope, slightly synchronized, and unsynchronizgabsitive
slope. The exponential behavior of the invariant distribution

that (41) has only one or two solutions. Because we expecbf separations is clear from the straight lines on the logarith-

the physical solution to depend drl' the trivial solution

mic plot. Belowz=—12, the difference noise causes a dip in

o=0is ignored unlesS(o) is a degenerate curve like the one probability which destroys the exponential behavior. Above
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S S
(a) 2 (@) 2
1.75 1.75
1.5 1.5
1.25 \ 1.25¢}
0.75 0.75
0.5 0.5
0.25 0.25}
-1.5 -1 -0.5 0 0.5 1 .2 -1.5 -1 ~0.5 0 0.5 1 1.8
S S
(b) 2 (e) 2
1.75 1.75
1.5 1.5
1.25 25 /
0.75} 0.75
0.5} 0.5
0.25} 0.25
-1.5 -1 -0.5 0 0.5 1 .9 -1.5 -1 -0.5 0 0.5 1 1.5
S
(c) 2
1.75
1.5
1.25
0.75
0.5
0.25
-1.5 -1 -0.5 0 0.5 1 1.5

FIG. 4. Five different possible cases for the shape of the cBw given in (40). Solutions to(41) appear as intersections between the
curve and the line=1, which is also plotted. If), (b), and(c) there is only one solution t@l1) and the physical solution has gone to minus
infinity, infinity, and zero, respectivelyd) and(e) each show two solutions 1d1); the physical solution iid) is negative while the physical
solution in(e) is positive. Note thatc) is a degenerate case @) and(e).

z=—7 the Taylor expansion is not valid and the nonlinearmap will be in the unstable region with probabilipy,=2/3

terms bring the two subsystems closer to each other, keepirand land in the stable region with probabilipg=1/3. This

them within the attractor size. uniform noise forces independence between the current state
Determining the behavior of the distribution exponent ofof the system and any previous states such 38, holds

the maps(47) can be easily done at the extremes of noiseexactly for L%, from which we determine the distribution

variance. Without noise the map is stable until the centeexponent analytically. The distribution of the running aver-

slopem, drops below—1. Two identical stable maps without age for one time step is

noise will stay synchronized and ljmgo=—». When the

fixed point goes unstable the whole map goes unstable, the LY A)=38(A—N)+38(A—\y), (48)

two trajectories become completely unsynchronized, and

o=, In the opposite extreme if uniform noise on the circle where hered is the diracé function. Putting this inta(39)

is added to the map at every iteration, the map is equallgives an equation fos

likely to visit any point on the intervat-1/2 to 1/2. This is

the special case treated by Pikovgky]. At each step the 1=3%e Mut3e s (49)
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Noise Variance
o
o
r

[ 8]

0.1 = petween it anq thg separatinan id_ea important in_optain-
ing (35). The distribution exponent is much more difficult to
determine analytically than the conditional Lyapunov expo-
nent. Unlike the analysis leading (49), we need to account

0.08f for dependencies between time steps. As previously dis-
cussed, we average the instantaneous Lyapunov exponents
over N time steps such that the running average Lyapunov

0.06 A=0 A=0.25 exponentsA™ become less dependent on each otherNAs
increases ir{39) its solution becomes a better approximation
for o.

The distribution of AN can be determined either through

-0ar numerical simulation or through mapping of the invariant
distribution. It is faster computationally to use numerical
simulations. Figure 7 compares the predicted of the distribu-

0.0 tion exponent from(39) for a common noise variance of
0.0698 andms=—0.1 with increasing values dfl, to the
value of o measured from computer simulatighorizontal

\\\ line). As N increases the prediction becomes closer to the
- . — value measured in computer simulations, showing that the
-0.2 -0.4 -0.6 -0.8 -1 ; . : .
running averages become increasingly independent of the
Stable Slope separation.

A main consequence of the dependence between instanta-
neous Lyapunov exponents is a modification of the variance.
For the maps of47) with a common noise level of 0.020 89
and a center slopen,=-0.5 the probability of having
A=)\, is 0.685 and the probability of having'=), is
0.315. A random variable created from an average of five
samples of that random variable would have a variance of
0.0470. However the running averag€ has a variance
0.0625. The variance of the running average is larger be-
cause after the instantaneous Lyapunov exponent has taken a

value, eitheig or A, it is more likely to take the same value
during the next iteration.

o
o
o))

Noise Variance
o
o
.

D. Normal distribution of running arverages

NS

(b)
A=0.25
The distribution of AN for large N approaches a normal
distribution, a consequence of the ergodic theof2f. The
-0.

H \
mean of AN for large N should be the same a$§' and the
2

0.1
0.08
\\\ variance ofAN should decrease proportionally k& Using a

0. 0.2 0.6 8 1 normal distribution in(39) gives
Stable Slope

N _ 1= jw 1 e~ (MALA-NZ(W/N)]g=NoAg A (50)
FIG. 5. Two contour plots of conditional Lyapunov exponent in - \J27v/N
the parameter space of noise variagend center slopeng of the
piecewise linear map. The noise is Gaussian with a variance indiyhere the variance is
cated on the vertical scale. The contour lines are spaced every 0.25.
Plot (a) comes from analysis; pldb), from simulation. v=lim N Var(AN)_ (51)

N—s o0

which can be solved numerically. Bothr and \ cross
through zero whemgy~—0.355. If mg is less negative than . L . .
this the two maps become synchronized and their trajectorie%he_ variancey can be split into two pieces, the variance of
stay close to each other despite the random fluctuations. ['€ instantaneous Lyapunov exponent and the correction due

m, is more negative thar-0.355, the trajectories of the two (© the dependency between time steps. The dependency cor-
maps spend more time far apart in phase space than close ®@Ftion is expressed through a diffusion coefficig2t]

each other, i.e., the systems are unsynchronized. The distri- 11 11
bution exponent characterizes the continuous transition be- _L (ATAT N (ATATL,
tween synchronized and unsynchronized behavior. 2 ((AH?) ((AH?)

D T (52)

C. Dependence between adjacent running averages with v expressed as

The maps 0f47) can also elucidate the ideas of the run-
ning average Lyapunov exponenf' and the dependence v=E(A*—E(AY)]?)2D. (53
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In(P(z))
0.

-14 -12 -10 -8 -6 -4 -2 0

FIG. 6. P(2), the probability density, is plotted on a logarithmic scale vs the sepaatitmir|. [P(z)dzis the probability of finding the
two systems described by the mappidd) between the range of separatianandz+ dz.] The common noise is Gaussian. The difference
noise is Gaussian with variance 8. There are three different maps shown. In the synchronized map—0.1 and common noise
variance is 0.0698. The map that is barely synchronized has paramgter0.951 and common noise variance 0.002 31. The unsynchro-
nized map has parameter,=—0.5 and common noise variance 0.0698.

Performing the integration if60) we obtain ian and deteriorates toward the tails. The further from 2ero
. is, the more the tails are emphasized in the calculatiomrfor
1= MNo+ (12 (w/N)(No) (54) Consequently the approximation holds best whes close
to zero.

and solving foro we find
E. Relation between Lyapunov and distribution exponents

No(zve—N\)=0. (55 Figure 8 shows plots generated through computer simula-
tion of o versus\ for the maps of47), with three different
Ignoring the trivial solutiono=0 we get noise levels, obtained by varying,. Two features are clear

from the plot. Firsto- and\ always change sign together; the
graph stays in the first and third quadrants and always passes
through the origin. This relationship can be proved for any
distribution LN(AN) through use of the properties &o).
which is calculable fron{32) and (51). The approximation Recall thatS(0)=1 and thatS always has positive curvature.

of a normal distribution is best at the maximum of the GaussThe first derivative ofS is

o=—, (56)
v

-1 4 6 8 10 12 14 T6™

FIG. 7. Plot of the prediction fos produced by the distribution FIG. 8. Plot of the distribution exponent vs the Lyapunov expo-
of AN for increasingN. The measurements were taken at a largenent for three different noise levels. The large, medium, and low
noise level with a Gaussian variance of 0.069 and a center slope ofoise levels used had variances of 0.0698, 0.0209, and 0.002 315,
the piecewise linear map of0.1. respectively.
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TABLE I. Comparison of the values afo/d\ |, o measured through computer simulations and predicted
from Eg. (66) for various common noise variances. The diffusion coefficient was calculated through com-

puter simulations.

Noise Diffusion do do
variance coefficient N N
dMy o dMy—o
Prediction Simulations
Large noise 0.069 773 1.269 3.64 3.583
Medium noise 0.020 895 1.415 7.27 7.08
Low noise 0.002 315 1.452 40.7 36.8
dS * N dO'
R Ny N/ A Nya—oNA N b
do f,mNA LY(AMe dA ™. (57) ax
We evaluatg57) at o=0 to obtain 2|4 _ d(AytAs) _ + %4_ %
2[)\ {1 ax AANyT AN, an ANg ax
ds o = 2 2
E Z_J NANLN(AN)dAN. (58) ()\—)\S) O\_)\u) 2D
o=0 - (65)
Since, for anyN, Evaluating(65) at A\=0 yields
x:f ANLN(AN)dAN (59) doj -2 (66)
’°° d\ N—0 A\ 2D

we have

ds

% :—N)\.

o=0

A negative Lyapunov exponent selects Fige)4and 4d) as
the only possibilities for the relationship betwe8tv) and

where), and\4 take on values at=0 which depend on the
noise level. Table | shows a comparison between measured
(60)  values and predicted values of

do
d\

=0

the horizontal lineS=1, because through E¢60) the slope o o . )
of S(o) through S(0)=0 must be positive. So the second The diffusion coefficientD defined in(52) was calculated

solution, if it exists, must be less than zero, as is the!Sing computer simulations.
Lyapunov exponent. Similarly, if the Lyapunov exponent is
positive, the slope must be negative, Fig&)4and 4e) are V. CONCLUSIONS AND DISCUSSION

the only possibilities, and the second solution must be posi-

tive.

The second feature of Fig. 8 is that the transition throug
the origin is abrupt for low noise levels and gradual for larg

We have studied the synchronization of trajectories sub-
fect to difference noise through use of a piecewise linear map
eWith additive white noise on the circle. To analyze the syn-

noise levels. The slope of the line at zero quantifies the ratgronization properties of the map we developed approxima-

of transition from synchronized to unsynchronized behavior.
This slope can be determined analytically fr@¢f®6). Using

expressions fok, A, andv
N=PyAyt Pshs,
((ADZ)=pAi+PaE,
v=varA')2D=[((A})?)—\?]2D
=—(N—Ay(A—2Ag)2D,
and substituting these ini®6), we obtain

—2\
(A=A (A=Xg)2D°

o=

The derivative of(64) with respect to\ is

tion methods to obtain the invariant distribution of maps with
single fixed points on the circle. The invariant distribution
can be used to determine the conditional Lyapunov expo-
nent. We could easily measure and predict the conditional
(61) Lyapunov exponent because of our knowledge of the map
used in the computer simulations. We developed another
(62) method of characterizing the degree of synchronization, us-
ing a distribution exponent. This exponent describes the in-
variant distribution of the separations between two nearly
identical systems and is closely tied to the intuitive idea of
(63 synchronization. Using a pair of piecewise linear maps with
difference noise, we obtained a distribution exponent de-
scribing the degree of synchronization between the maps.
We also illustrated how dependence between time steps of
the maps affects prediction of the distribution exponent. We
related the distribution exponent to the conditional Lyapunov
exponent near the threshold of synchronization, showing that
they change sign together, and determining

(64)
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In(P(z))

: A A . A : A y oz
-14 -12 -10 -8 -6 -4 -2

FIG. 9. Plot of probability of separation for two DPLL loops being fed by a common signal from another DPLL operating in the chaotic
regime. P(z) is plotted on a logarithmic scale verszsIn|r|.

do decreases as the time between the samples grows; however,
a~ . the samples never become fully independent. Figure 9,
A=0 which shows a graph remarkably similar to Fig. 6, was gen-

The piecewise linear map driven by additive Gaussianerated by a computer simulation of a DPLL system contain-

white noise provides a basic system having both stable angd two nearly iden.tica.l loops and f_ed Wit.h a signal from two
unstable regions for determining the distribution exponent.Other loops operating in the_chaotl_c regifis These_ '°°p$
ere not fed by a random signal; i.e., the system is entirely

However, maps that model many real systems are ofte t nistic. Yet Fig. 9 sh h font Fia. 6
driven by correlated noisy signals that are not Gaussian. Wi eterministic. Yet F1g. = shows the same features as Hg. o,

have observed exponential distribution of separation for th@nte;](cporéennal d|st:c|tt);|t|on with ﬁ‘we” deflnedtslt?]p(ta ta;]nd(;\_/vtq
maps(47) with other forms of additive noise distributions, cutofs. because of (hese results we suggest that the distri-

for the logistic map with additive Gaussian noise, for maps’butlon exponent is well suited to measure chaotic synchroni-

describing digital phase locked loofl®PLLS) [8] with ran- zation.
dom frequency input, and for DPLL systems that are fed not
with noise but with a signal from a deterministic chaotic
system. We would like to acknowledge Maria de Sousa Vieira,
The last case seems especially interesting since a chaoticho first brought Pikovsky's paper to our attention. This
input comes from a deterministic system and since differentvork was partially supported by ONR Grants N00014-95-|-
samples taken from a chaotic input signal are correlated. Th@361 and N00014-89-J-1097, and by NSF Grant PHY-
correlation between samples taken of a chaotic input signé@d505621.
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